Testing of Hybrid Genetic Algorithms for Structured Quadratic Assignment Problems
نویسنده
چکیده
In this paper, an efficient hybrid genetic algorithm (HGA) and its variants for the wellknown combinatorial optimization problem, the quadratic assignment problem (QAP) are discussed. In particular, we tested our algorithms on a special type of QAPs, the structured quadratic assignment problems. The results from the computational experiments on this class of problems demonstrate that HGAs allow to achieve near-optimal and (pseudo-)optimal solutions at very reasonable computation times. The obtained results also confirm that the hybrid genetic algorithms are among the most suitable heuristic approaches for this type of QAPs.
منابع مشابه
Tabu Search and Hybrid Genetic Algorithms for Quadratic Assignment Problems
In this chapter experience with solving quadratic assignment problems is reported. The results reported in this chapter are the best results for heuristic solutions of the quadratic assignment problem available to date and can serve as bench mark results for future researchers who propose new approaches for solving quadratic assignment problems. The most effective method to date for solving qua...
متن کاملA Honey Bee Algorithm To Solve Quadratic Assignment Problem
Assigning facilities to locations is one of the important problems, which significantly is influence in transportation cost reduction. In this study, we solve quadratic assignment problem (QAP), using a meta-heuristic algorithm with deterministic tasks and equality in facilities and location number. It should be noted that any facility must be assign to only one location. In this paper, first o...
متن کاملMathematical Programming Models for Solving Unequal-Sized Facilities Layout Problems - a Generic Search Method
This paper present unequal-sized facilities layout solutions generated by a genetic search program named LADEGA (Layout Design using a Genetic Algorithm). The generalized quadratic assignment problem requiring pre-determined distance and material flow matrices as the input data and the continuous plane model employing a dynamic distance measure and a material flow matrix are discussed. Computa...
متن کاملA hybrid genetic/immune strategy to tackle the multiobjective quadratic assignment problem
The Genetic Immune Strategy for Multiple Objective Optimization (GISMOO) is a hybrid algorithm for solving multiobjective problems. The performance of this approach has been assessed using a classical combinatorial multiobjective optimization benchmark: the multiobjective 0/1 knapsack problem (MOKP) [1] and two-dimensional unconstrained multiobjective problems (ZDT) [2]. This paper shows that t...
متن کاملHybrid Population-Based Algorithms for the Bi-Objective Quadratic Assignment Problem
We present variants of an ant colony optimization (MO-ACO) algorithm and of an evolutionary algorithm (SPEA2) for tackling multi-objective combinatorial optimization problems, hybridized with an iterative improvement algorithm and the Robust Tabu Search algorithm. The performance of the resulting hybrid stochastic local search (SLS) algorithms is experimentally investigated for the bi-objective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Informatica, Lith. Acad. Sci.
دوره 20 شماره
صفحات -
تاریخ انتشار 2009